Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
1.
PLoS One ; 19(5): e0303075, 2024.
Article in English | MEDLINE | ID: mdl-38723012

ABSTRACT

INTRODUCTION: Community-based health interventions often demonstrate efficacy in clinical trial settings but fail to be implemented in the real-world. We sought to identify the key operational and contextual elements of the Los Angeles Barbershop Blood Pressure Study (LABBPS), an objectively successful community-based health intervention primed for real-world implementation. LABBPS was a cluster randomized control trial that paired the barbers of Black-owned barbershops with clinical pharmacists to manage uncontrolled hypertension in Black male patrons, demonstrating a substantial 21.6 mmHg reduction in systolic blood pressure. Despite this success, the LABBPS intervention has not expanded beyond the original clinical trial setting. The aim of this study was to determine the facilitating and limiting factors to expansion of the LABBPS intervention. METHODS: We undertook a qualitative assessment of semi-structured interviews with study participants performed after trial completion. Interviews included a total of 31 participants including 20 (6%) of the 319 LABBPS program participants ("patrons"), 10 (19%) barbers, and one (50%) clinical pharmacist. The semi-structured interviews were focused on perceptions of the medical system, study intervention, and influence of social factors on health. RESULTS: Several common themes emerged from thematic analysis of interview responses including: importance of care provided in a convenient and safe environment, individual responsibility for health and health-related behaviors, and engagement of trusted community members. In particular, patrons reported that receiving the intervention from their barber in a familiar environment positively influenced the formation of relationships with clinical pharmacists around shared efforts to improve medication adherence and healthy habits. All interviewee groups identified the trust diad, comprising the familiar environment and respected community member, as instrumental in increasing health-related behaviors to a degree not usually achieved by traditional healthcare providers. DISCUSSION: In conclusion, participants of an objectively successful community-based intervention trial consistently identified key features that could facilitate wider implementation and efficacy: social trust relationships, soliciting insights of trust bearers, and consistent engagement in a familiar community setting. These findings can help to inform the design and operations of future community-based studies and programs aiming to achieve a broad and sustainable impact.


Subject(s)
Hypertension , Humans , Male , Hypertension/therapy , Hypertension/drug therapy , Middle Aged , Adult , Qualitative Research , Los Angeles , Interviews as Topic , Blood Pressure , Female , Pharmacists/psychology , Black or African American
2.
Pharmacy (Basel) ; 12(2)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38668080

ABSTRACT

The Medical and Pharmacy Student Collaboration (MAPSC) student organization at the University of Southern California, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, created an extracurricular, peer-led, virtual group mock objective structured clinical examination (MOSCE) to expose first-year pharmacy students (P1s) to the Pharmacists' Patient Care Process (PPCP). The purpose of this study is to evaluate the impact of a MAPSC MOSCE on P1s self-reported confidence in applying the PPCP and on patient communication, medication knowledge, and clinical skills. An anonymous, optional, self-reported survey was administered to P1s before and after the event, where they rated their confidence on a scale of 0-100 (0 = not confident, 100 = certainly confident). The statistical analysis was a paired two-tailed t-test with a significance level of p < 0.05. A total of 152 P1s and 30 facilitators attended the MOSCE. One hundred thirty-nine students met the inclusion criteria and were included in the data analysis. There was a statistically significant difference in the change in self-reported confidence for all PPCP components and learning outcomes. The results of our study strongly indicate that introducing P1 students to the PPCP through a MAPSC MOSCE format is a valuable experience.

3.
Clin Cancer Res ; 30(10): 2193-2205, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38592373

ABSTRACT

PURPOSE: TGFß signaling is implicated in the progression of most cancers, including esophageal adenocarcinoma (EAC). Emerging evidence indicates that TGFß signaling is a key factor in the development of resistance toward cancer therapy. EXPERIMENTAL DESIGN: In this study, we developed patient-derived organoids and patient-derived xenograft models of EAC and performed bioinformatics analysis combined with functional genetics to investigate the role of SMAD family member 3 (SMAD3) in EAC resistance to oxaliplatin. RESULTS: Chemotherapy nonresponding patients showed enrichment of SMAD3 gene expression when compared with responders. In a randomized patient-derived xenograft experiment, SMAD3 inhibition in combination with oxaliplatin effectively diminished tumor burden by impeding DNA repair. SMAD3 interacted directly with protein phosphatase 2A (PP2A), a key regulator of the DNA damage repair protein ataxia telangiectasia mutated (ATM). SMAD3 inhibition diminished ATM phosphorylation by enhancing the binding of PP2A to ATM, causing excessive levels of DNA damage. CONCLUSIONS: Our results identify SMAD3 as a promising therapeutic target for future combination strategies for the treatment of patients with EAC.


Subject(s)
Adenocarcinoma , Ataxia Telangiectasia Mutated Proteins , DNA Repair , Esophageal Neoplasms , Oxaliplatin , Smad3 Protein , Xenograft Model Antitumor Assays , Humans , Smad3 Protein/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , DNA Repair/drug effects , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Mice , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , DNA Damage/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Signal Transduction/drug effects , Phosphorylation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Organoids/drug effects
4.
Diagnostics (Basel) ; 14(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38611591

ABSTRACT

Intravascular lymphomas are rare disease conditions that exhibit neoplastic lymphoid cells that are confined mainly to the lumens of small capillaries and medium-sized vessels. The majority of the intravascular lymphomas are of B-cell origin, but they can include NK/T-cell and CD30+ immunophenotypes. In the histologic differential diagnosis are benign proliferations such as intralymphatic histiocytosis and intravascular atypical CD30+ T-cell proliferation. In this review, we discuss the clinical, histopathologic, and molecular findings of intravascular B-cell lymphoma, intravascular NK/T-cell lymphoma, intralymphatic histiocytosis, and benign atypical intravascular CD30+ T-cell proliferation.

5.
J Immunother Cancer ; 12(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38599660

ABSTRACT

With an increasing number of patients eligible for immune checkpoint inhibitors, the incidence of immune-related adverse events (irAEs) is on the rise. Dermatologic immune-related adverse events (D-irAEs) are the most common and earliest to manifest, often with important downstream consequences for the patient. Current guidelines lack clarity in terms of diagnostic criteria for D-irAEs. The goal of this project is to better define D-irAE for the purposes of identification, diagnosis, and future study of this important group of diseases.The objectives of this project were to develop consensus guidance for an approach to D-irAEs including disease definitions and severity grading. Knowing that consensus among oncologists, dermatologists, and irAE subspecialists would be critical for usability, we formed a Dermatologic irAE Disease Definition Panel. The panel was composed of 34 experts, including oncologists, dermatologists, a rheumatologist, and an allergist/immunologist from 22 institutions across the USA and internationally. A modified Delphi consensus process was used, with two rounds of anonymous ratings by panelists and two virtual meetings to discuss areas of controversy. Panelists rated content for usability, appropriateness, and accuracy on 9-point scales in electronic surveys and provided free text comments. A working group aggregated survey responses and incorporated them into revised definitions. Consensus was based on numeric ratings using the RAND/UCLA Appropriateness Method with prespecified definitions.Following revisions based on panelist feedback, all items received consensus in the second round of ratings. Consensus definitions were achieved for 10 core D-irAE diagnoses: ICI-vitiligo, ICI-lichen planus, ICI-psoriasis, ICI-exanthem, ICI-bullous pemphigoid, ICI-Grover's, ICI-eczematous, ICI-eruptive atypical squamous proliferation, ICI-pruritus without rash, and ICI-erosive mucocutaneous. A standard evaluation for D-irAE was also found to reach consensus, with disease-specific exceptions detailed when necessary. Each disorder's description includes further details on disease subtypes, symptoms, supportive exam findings, and three levels of diagnostic certainty (definite, probable, and possible).These consensus-driven disease definitions standardize D-irAE classification in a useable framework for multiple disciplines and will be the foundation for future work. Given consensus on their accuracy and usability from a representative panel group, we anticipate that they can be used broadly across clinical and research settings.


Subject(s)
Exanthema , Oncologists , Humans , Consensus , Immune Checkpoint Inhibitors/adverse effects , Radioimmunotherapy
6.
Br J Dermatol ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38366637

ABSTRACT

BACKGROUND: Cutaneous immune-related adverse events (cirAEs) are the most common toxicities to occur in the setting of immune checkpoint inhibitor (ICI) therapy. Identifying patients who are at increased risk of developing cirAEs may improve quality of life and outcomes. OBJECTIVE: To investigate the influence of cancer type and histology on the development of cirAEs in the setting of ICI therapy and survival outcomes. METHODS: This retrospective cohort study included patients between December 1, 2011, and October 30, 2020. They received ICIs from 2011-2020 with follow-up of outcomes through October 2021. We identified 3,668 ICI recipients who were seen at Mass General Brigham and Dana-Farber. Of these, 669 developed cirAEs. Records that were incomplete or categories of insufficient sample size were excluded from the study cohort. Multivariate Cox proportional hazards models were utilized to investigate the impact of cancer organ system and histology on cirAE development, after adjusting for demographics, Charlson Comorbidity Index, ICI type, cancer stage at ICI initiation, and year of ICI initiation. Time-varying Cox proportional hazards modeling was utilized to examine the impact of cirAE development on mortality. RESULTS: Compared to other non-epithelial cancers (neuroendocrine, leukemia, lymphoma, myeloma, sarcoma, and central nervous system malignancies), cutaneous squamous cell carcinoma (cSCC) (HR = 3.57, p < 0.001), melanoma (HR = 2.09, p < 0.001), head and neck adenocarcinoma (HR = 2.13, p = 0.009), genitourinary transitional cell carcinoma (HR = 2.15, p < 0.001), and genitourinary adenocarcinoma (HR = 1.53, p = 0.037) were at significantly higher risk of cirAEs in multivariate analyses. The increased risk of cirAEs translated into an adjusted survival benefit for melanoma (HR = 0.37, p < 0.001) and cSCC (HR = 0.51, p = 0.011). CONCLUSIONS: The highest rate of cirAEs and subsequent survival benefits were observed in cutaneous malignancies treated with ICIs. This study improves our understanding of patients who are at highest risk of developing cirAEs and would, therefore, benefit from appropriate counseling and closer monitoring by their oncologists and dermatologists throughout their ICI therapy. Limitations include its retrospective nature and cohort from one geography.

7.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38314890

ABSTRACT

Intraspecific functional variation is critical for adaptation to rapidly changing environments. For visual opsins, functional variation can be characterized in vitro and often reflects a species' ecological niche but is rarely considered in the context of intraspecific variation or the impact of recent environmental changes on species of cultural or commercial significance. Investigation of adaptation in postglacial lakes can provide key insight into how rapid environmental changes impact functional evolution. Here, we report evidence for molecular adaptation in vision in 2 lineages of Nearctic fishes that are deep lake specialists: ciscoes and deepwater sculpin. We found depth-related variation in the dim-light visual pigment rhodopsin that evolved convergently in these 2 lineages. In vitro characterization of spectral sensitivity of the convergent deepwater rhodopsin alleles revealed blue-shifts compared with other more widely distributed alleles. These blue-shifted rhodopsin alleles were only observed in deep clear postglacial lakes with underwater visual environments enriched in blue light. This provides evidence of remarkably rapid and convergent visual adaptation and intraspecific functional variation in rhodopsin. Intraspecific functional variation has important implications for conservation, and these fishes are of conservation concern and great cultural, commercial, and nutritional importance to Indigenous communities. We collaborated with the Saugeen Ojibway Nation to develop and test a metabarcoding approach that we show is efficient and accurate in recovering the ecological distribution of functionally relevant variation in rhodopsin. Our approach bridges experimental analyses of protein function and genetics-based tools used in large-scale surveys to better understand the ecological extent of adaptive functional variation.


Subject(s)
Evolution, Molecular , Rhodopsin , Animals , Rhodopsin/genetics , Rhodopsin/metabolism , Fishes/genetics , Fishes/metabolism , Vision, Ocular , Ecosystem
8.
J Mol Evol ; 92(1): 61-71, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324225

ABSTRACT

Eukaryotic cells use G protein-coupled receptors (GPCRs) to convert external stimuli into internal signals to elicit cellular responses. However, how mutations in GPCR-coding genes affect GPCR activation and downstream signaling pathways remain poorly understood. Approaches such as deep mutational scanning show promise in investigations of GPCRs, but a high-throughput method to measure rhodopsin activation has yet to be achieved. Here, we scale up a fluorescent reporter assay in budding yeast that we engineered to study rhodopsin's light-activated signal transduction. Using this approach, we measured the mutational effects of over 1200 individual human rhodopsin mutants, generated by low-frequency random mutagenesis of the GPCR rhodopsin (RHO) gene. Analysis of the data in the context of rhodopsin's three-dimensional structure reveals that transmembrane helices are generally less tolerant to mutations compared to flanking helices that face the lipid bilayer, which suggest that mutational tolerance is contingent on both the local environment surrounding specific residues and the specific position of these residues in the protein structure. Comparison of functional scores from our screen to clinically identified rhodopsin disease variants found many pathogenic mutants to be loss of function. Lastly, functional scores from our assay were consistent with a complex counterion mechanism involved in ligand-binding and rhodopsin activation. Our results demonstrate that deep mutational scanning is possible for rhodopsin activation and can be an effective method for revealing properties of mutational tolerance that may be generalizable to other transmembrane proteins.


Subject(s)
Receptors, G-Protein-Coupled , Rhodopsin , Humans , Rhodopsin/genetics , Rhodopsin/chemistry , Rhodopsin/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/chemistry , Signal Transduction , Protein Structure, Secondary , Mutation
12.
Nat Commun ; 15(1): 285, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177144

ABSTRACT

Lassa virus (LASV) infection is expanding outside its traditionally endemic areas in West Africa, posing a pandemic biothreat. LASV-neutralizing antibodies, moreover, have proven difficult to elicit. To gain insight into LASV neutralization, here we develop a prefusion-stabilized LASV glycoprotein trimer (GPC), pan it against phage libraries comprising single-domain antibodies (nanobodies) from shark and camel, and identify one, D5, which neutralizes LASV. Cryo-EM analyses reveal D5 to recognize a cleavage-dependent site-of-vulnerability at the trimer apex. The recognized site appears specific to GPC intermediates, with protomers lacking full cleavage between GP1 and GP2 subunits. Guinea pig immunizations with the prefusion-stabilized cleavage-intermediate LASV GPC, first as trimer and then as a nanoparticle, induce neutralizing responses, targeting multiple epitopes including that of D5; we identify a neutralizing antibody (GP23) from the immunized guinea pigs. Collectively, our findings define a prefusion-stabilized GPC trimer, reveal an apex-situated site-of-vulnerability, and demonstrate elicitation of LASV-neutralizing responses by a cleavage-intermediate LASV trimer.


Subject(s)
Lassa Fever , Single-Domain Antibodies , Animals , Guinea Pigs , Lassa virus , Antibodies, Viral , Antibodies, Neutralizing
16.
medRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961671

ABSTRACT

Background: Acute kidney injury (AKI) is common in hospitalized patients with SARS-CoV2 infection despite vaccination and leads to long-term kidney dysfunction. However, peripheral blood molecular signatures in AKI from COVID-19 and their association with long-term kidney dysfunction are yet unexplored. Methods: In patients hospitalized with SARS-CoV2, we performed bulk RNA sequencing using peripheral blood mononuclear cells(PBMCs). We applied linear models accounting for technical and biological variability on RNA-Seq data accounting for false discovery rate (FDR) and compared functional enrichment and pathway results to a historical sepsis-AKI cohort. Finally, we evaluated the association of these signatures with long-term trends in kidney function. Results: Of 283 patients, 106 had AKI. After adjustment for sex, age, mechanical ventilation, and chronic kidney disease (CKD), we identified 2635 significant differential gene expressions at FDR<0.05. Top canonical pathways were EIF2 signaling, oxidative phosphorylation, mTOR signaling, and Th17 signaling, indicating mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Comparison with sepsis associated AKI showed considerable overlap of key pathways (48.14%). Using follow-up estimated glomerular filtration rate (eGFR) measurements from 115 patients, we identified 164/2635 (6.2%) of the significantly differentiated genes associated with overall decrease in long-term kidney function. The strongest associations were 'autophagy', 'renal impairment via fibrosis', and 'cardiac structure and function'. Conclusions: We show that AKI in SARS-CoV2 is a multifactorial process with mitochondrial dysfunction driven by ER stress whereas long-term kidney function decline is associated with cardiac structure and function and immune dysregulation. Functional overlap with sepsis-AKI also highlights common signatures, indicating generalizability in therapeutic approaches. SIGNIFICANCE STATEMENT: Peripheral transcriptomic findings in acute and long-term kidney dysfunction after hospitalization for SARS-CoV2 infection are unclear. We evaluated peripheral blood molecular signatures in AKI from COVID-19 (COVID-AKI) and their association with long-term kidney dysfunction using the largest hospitalized cohort with transcriptomic data. Analysis of 283 hospitalized patients of whom 37% had AKI, highlighted the contribution of mitochondrial dysfunction driven by endoplasmic reticulum stress in the acute stages. Subsequently, long-term kidney function decline exhibits significant associations with markers of cardiac structure and function and immune mediated dysregulation. There were similar biomolecular signatures in other inflammatory states, such as sepsis. This enhances the potential for repurposing and generalizability in therapeutic approaches.

17.
PLoS Pathog ; 19(9): e1011584, 2023 09.
Article in English | MEDLINE | ID: mdl-37738240

ABSTRACT

The Pneumoviridae family of viruses includes human metapneumovirus (HMPV) and respiratory syncytial virus (RSV). The closely related Paramyxoviridae family includes parainfluenza viruses (PIVs). These three viral pathogens cause acute respiratory tract infections with substantial disease burden in the young, the elderly, and the immune-compromised. While promising subunit vaccines are being developed with prefusion-stabilized forms of the fusion glycoproteins (Fs) of RSV and PIVs, for which neutralizing titers elicited by the prefusion (pre-F) conformation of F are much higher than for the postfusion (post-F) conformation, with HMPV, pre-F and post-F immunogens described thus far elicit similar neutralizing responses, and it has been unclear which conformation, pre-F or post-F, would be the most effective HMPV F-vaccine immunogen. Here, we investigate the impact of further stabilizing HMPV F in the pre-F state. We replaced the furin-cleavage site with a flexible linker, creating a single chain F that yielded increased amounts of pre-F stabilized trimers, enabling the generation and assessment of F trimers stabilized by multiple disulfide bonds. Introduced prolines could increase both expression yields and antigenic recognition by the pre-F specific antibody, MPE8. The cryo-EM structure of a triple disulfide-stabilized pre-F trimer with the variable region of antibody MPE8 at 3.25-Å resolution confirmed the formation of designed disulfides and provided structural details on the MPE8 interface. Immunogenicity assessments in naïve mice showed the triple disulfide-stabilized pre-F trimer could elicit high titer neutralization, >10-fold higher than elicited by post-F. Immunogenicity assessments in pre-exposed rhesus macaques showed the triple disulfide-stabilized pre-F could recall high neutralizing titers after a single immunization, with little discrimination in the recall response between pre-F and post-F immunogens. However, the triple disulfide-stabilized pre-F adsorbed HMPV-directed responses from commercially available pooled human immunoglobulin more fully than post-F. Collectively, these results suggest single-chain triple disulfide-stabilized pre-F trimers to be promising HMPV-vaccine antigens.


Subject(s)
Metapneumovirus , Respiratory Syncytial Virus, Human , Aged , Humans , Animals , Mice , Macaca mulatta , Antibodies , Antigens, Viral , Disulfides , Glycoproteins , Parainfluenza Virus 1, Human
18.
medRxiv ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693493

ABSTRACT

Background: Relationships between pre-existing inflammatory diseases (pIDs) and cutaneous immune-related adverse events (cirAEs) have not been well-studied. This study is to investigate associations between pIDs and cirAEs among immune-checkpoint inhibitor (ICI) recipients at the Mass General Brigham healthcare system. Methods: Electronic health records were reviewed to ascertain cirAE status. Patients' pID status was determined using International Classification of Diseases (ICD) codes. Cox proportional hazard, logistic regression, and linear regression models were performed. Results: Among 3607 ICI recipients, 1354 had pIDs, and 672 developed cirAEs. After covariate adjustments, patients with cutaneous pIDs (HR:1.56, p<0.001) or both cutaneous and non-cutaneous pIDs (HR:1.76, p<0.001) had increased cirAE risk in contrast to patients with non-cutaneous pIDs alone (HR:1.01, p=0.9). In adjusted ordinal logistic regression modeling, cutaneous pIDs (OR:1.55, p<0.0001) and the presence of both cutaneous pIDs and non-cutaneous pIDs (OR:1.71, p=0.002) were associated with increased cirAE severity. The time to cirAE onset was different between the cutaneous pID group and the non-cutaneous pID group (Mean: 98 vs. 146 days, p=0.021; Beta: -0.11, p=0.033). Conclusions: ICI recipients with cutaneous pIDs should have increased clinical monitoring due to their increased risk of cirAE development, severity, and earlier onset.

19.
Gut ; 73(1): 47-62, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37734913

ABSTRACT

OBJECTIVE: Chronic gastro-oesophageal reflux disease, where acidic bile salts (ABS) reflux into the oesophagus, is the leading risk factor for oesophageal adenocarcinoma (EAC). We investigated the role of ABS in promoting epithelial-mesenchymal transition (EMT) in EAC. DESIGN: RNA sequencing data and public databases were analysed for the EMT pathway enrichment and patients' relapse-free survival. Cell models, pL2-IL1ß transgenic mice, deidentified EAC patients' derived xenografts (PDXs) and tissues were used to investigate EMT in EAC. RESULTS: Analysis of public databases and RNA-sequencing data demonstrated significant enrichment and activation of EMT signalling in EAC. ABS induced multiple characteristics of the EMT process, such as downregulation of E-cadherin, upregulation of vimentin and activation of ß-catenin signalling and EMT-transcription factors. These were associated with morphological changes and enhancement of cell migration and invasion capabilities. Mechanistically, ABS induced E-cadherin cleavage via an MMP14-dependent proteolytic cascade. Apurinic/apyrimidinic endonuclease (APE1), also known as redox factor 1, is an essential multifunctional protein. APE1 silencing, or its redox-specific inhibitor (E3330), downregulated MMP14 and abrogated the ABS-induced EMT. APE1 and MMP14 coexpression levels were inversely correlated with E-cadherin expression in human EAC tissues and the squamocolumnar junctions of the L2-IL1ß transgenic mouse model of EAC. EAC patients with APE1high and EMThigh signatures had worse relapse-free survival than those with low levels. In addition, treatment of PDXs with E3330 restrained EMT characteristics and suppressed tumour invasion. CONCLUSION: Reflux conditions promote EMT via APE1 redox-dependent E-cadherin cleavage. APE1-redox function inhibitors can have a therapeutic role in EAC.


Subject(s)
Adenocarcinoma , Gastroesophageal Reflux , Humans , Animals , Mice , Matrix Metalloproteinase 14/metabolism , Adenocarcinoma/pathology , Oxidation-Reduction , Epithelial-Mesenchymal Transition , Cadherins/metabolism , Cell Line, Tumor
20.
Commun Med (Lond) ; 3(1): 81, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308534

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a known complication of COVID-19 and is associated with an increased risk of in-hospital mortality. Unbiased proteomics using biological specimens can lead to improved risk stratification and discover pathophysiological mechanisms. METHODS: Using measurements of ~4000 plasma proteins in two cohorts of patients hospitalized with COVID-19, we discovered and validated markers of COVID-associated AKI (stage 2 or 3) and long-term kidney dysfunction. In the discovery cohort (N = 437), we identified 413 higher plasma abundances of protein targets and 30 lower plasma abundances of protein targets associated with COVID-AKI (adjusted p < 0.05). Of these, 62 proteins were validated in an external cohort (p < 0.05, N = 261). RESULTS: We demonstrate that COVID-AKI is associated with increased markers of tubular injury (NGAL) and myocardial injury. Using estimated glomerular filtration (eGFR) measurements taken after discharge, we also find that 25 of the 62 AKI-associated proteins are significantly associated with decreased post-discharge eGFR (adjusted p < 0.05). Proteins most strongly associated with decreased post-discharge eGFR included desmocollin-2, trefoil factor 3, transmembrane emp24 domain-containing protein 10, and cystatin-C indicating tubular dysfunction and injury. CONCLUSIONS: Using clinical and proteomic data, our results suggest that while both acute and long-term COVID-associated kidney dysfunction are associated with markers of tubular dysfunction, AKI is driven by a largely multifactorial process involving hemodynamic instability and myocardial damage.


Acute kidney injury (AKI) is a sudden, sometimes fatal, episode of kidney failure or damage. It is a known complication of COVID-19, albeit through unclear mechanisms. COVID-19 is also associated with kidney dysfunction in the long term, or chronic kidney disease (CKD). There is a need to better understand which patients with COVID-19 are at risk of AKI or CKD. We measure levels of several thousand proteins in the blood of hospitalized COVID-19 patients. We discover and validate sets of proteins associated with severe AKI and CKD in these patients. The markers identified suggest that kidney injury in COVID-19 patients involves damage to kidney cells that reabsorb fluid from urine and reduced blood flow to the heart, causing damage to heart muscles. Our findings might help clinicians to predict kidney injury in patients with COVID-19, and to understand its mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...